Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

EFFECT OF CHEMICAL DEGRADATION ON THE CHANGE OF PHYSICAL AND MECHANICAL PROPERTIES OF POLYMERIC FILMS WITH D2W ADDITIVE

Ershova O.V. 1 Bodyan L.A. 1 Ponomarev A.P. 1 Bakhaeva A.N. 1
1 Nosov Magnitogorsk state technical university
We have investigated the change of physical and mechanical properties of biodegradable polymer films with d2w additive over time as a result of their holdingat high humidity and temperature and in the soil. The study lasted for eight months. The test samples were six biodegradable films from different manufacturers, which were placed in anenvironmental camera (humidity 90 %, temperature 40 °C) and in the soil at room temperature. Every two weeks the samples were tested for tensile strength and puncture resistance. According to the results the changes of the strength characteristics of the films in time have been graphed.In order to research changes of the thermal characteristics of polymers while decomposinga synchronous thermal analysis of the samples was conducted. It was found that a significant reduction in physical and mechanical characteristics of packaging materials occurred during the period of the study. The decrease for some samples amounted to 70–80%. Mechanical properties of the samples, placed in anenvironmental camera, were reducing slightly faster than that of the samples in the soil.
biodegradable polymers
degradation
d2w additive
polyethylene
puncture strength
tensile strength
synchronous thermal analysis

Каждый год в России образуется около 750 тыс. т полимерных отходов. Из них только 10 % перерабатывается [4]. Переработке подвергаются главным образом отходы производства и лишь некоторые отходы потребления. Полимерная упаковка выходит из оборота почти сразу же после того, как товар попал в руки покупателя. Отходы полимеров, в том числе и упаковочных материалов, подвергают либо захоронению в земле, либо утилизации, которая осуществляется по одному из трёх направлений: сжигание, пиролиз, рециклинг [5]. Одним из наиболее эффективных способов решения проблемы полимерного мусора является производство биоразлагаемых полимеров, способных разрушаться в природе с образованием безвредных веществ.

Биоразлагаемые полимеры отличаются от всех других полимеров тем, что могут относительно быстро разлагаться под влиянием химических, биологических или физических воздействий. Биоразлагаемость – это способность материала подвергаться разложению на углекислый газ, метан, воду, неорганические компаунды или биомассы, при котором преобладающим механизмом является энзимное действие микроорганизмов.

Биоразлагаемые пластики делятся на две группы:

1. Оксоразлагаемые: полиэтилен (ПЭ) с добавками солей переходных металлов;

2. Биоразлагаемые – изготовлены из крахмала, полилактида.

Биоразлагаемые пластики, изготовленные с применением биоразлагаемой добавки d2w (дитиокарбонат железа или никеля), относят к классу оксо-биоразлагаемых, так как их разрушение происходит в два этапа: окисление и биоразложение.

Использование добавки обеспечивает следующий процесс [4]: в полимер поступает продеградант, который выступает в качестве катализатора, способствующего относительно быстрому разрушению длинных молекулярных цепей. Данный деградант представляет собой соль металла, вызывающую разрушение углеродных связей в молекулярных цепочках – таким образом активируется распад. Длинные цепочки рвутся, в результате чего образуется большое количество коротких цепочек. Молекулярная масса стремительно уменьшается до показателя менее 40 тысяч единиц атомной массы. На этой стадии пластиковые изделия становятся хрупкими и быстро распадаются на мелкие хлопья, материал становится смачиваемым, вследствие увеличения адгезии. Короткие цепочки способны легче гидратироваться, подвергаться окислению, а также действию микроорганизмов (стадия биологического распада), в результате образуется углекислый газ, вода и побочные вещества (сложные эфиры, карбоновые кислоты, этанол (этиловый спирт), альдегиды, кетоны). Побочные вещества со временем усваиваются микроорганизмами.

На рисунке 1 показан принцип действия добавки d2w на примере разложения ПЭ [4].

Рис.1. Принцип действия добавки d2w на примере разложения ПЭ

Добавку вводят в количестве 1 % от массы полимера. Добавка безвредна, что подтверждено российскими и международными сертификатами качества.

Основная цель исследования – выяснить влияние факторов окружающей среды на физико-механические характеристики упаковочных материалов. Испытания материалов на растяжение и на стойкость к проколу проводились каждые две недели в период с февраля 2014 г. по сентябрь 2014 г. В таблицах 1 и 2 и на рисунках 2–7 представлены результаты: исходные механические характеристики (февраль 2014 г.); промежуточные результаты (апрель 2014 г.); итоговые результаты (сентябрь 2014 г.). Стойкость к проколу определялась по ГОСТ 12.4.118-82 «Плёночные полимерные материалы и искусственные кожи для средств защиты рук. Метод определения стойкости к проколу». Испытания исследуемых плёнок на растяжение проводились в соответствии с ГОСТ 14236-81 «Плёнки полимерные. Метод испытания на растяжение».

В ходе исследования испытаниям были подвергнуты образцы шести биоразлагаемых плёнок различных производителей, которые были помещены в климатическую камеру (влажность 90 %, температура 40 °C) и в почву при комнатной температуре [3].

Ниже представлено описание испытуемых образцов с указанием производителя и периодом разложения, заявленным на упаковке [1]:

Образец №1– биопакеты для продуктов, 27×37 см: производитель – ООО "ПК УФА ПАК" Башкортостан, изготовлены из полиэтилена низкого давления с добавлением оксо-добавки d2w. Заявленный на этикетке срок разложения – 1,5–2 года под действием кислорода, воды и света.

Образец № 2 – биопакеты для мусора, 30×30 см: производитель – ООО "ПК УФА ПАК" Башкортостан, изготовлены из полиэтилена низкого давления с добавлением оксо-добавки d2w. Заявленный на этикетке срок разложения – 1,5–2 года под действием кислорода, воды и света.

Образец № 3– пакеты для мусора, особо прочные: производитель – ООО "Грифон", г. Новосибирск. Период разложения, заявленный на упаковке – 3 года.

Образец № 4 – пакеты для замораживания биоразлагаемые: производитель – ООО "Грифон", г. Новосибирск. Период разложения на упаковке не указан. Изготовлены из полиэтилена низкого давления с добавлением оксо-добавки d2w.

Образец № 5 – пакеты для продуктов: произведены в г. Серпухов. Период разложения 8–18 месяцев. Изготовлены из полиэтилена низкого давления с добавлением оксо-добавки d2w.

Образец № 6 – биопакеты с затяжками, 51×53 см: производитель – ООО "КПД", Украина, Днепропетровский район, пгт. Юбилейный. На упаковке указано, что пакеты изготовлены по инновационной технологии, гарантированный срок распада – 3 года. Разлагаются на экологически безопасные составляющие: воду, углекислый газ, гумус. Изготовлены из полиэтилена низкого давления с добавлением оксо-добавки d2w.

Таблица 1

Результаты испытаний образцов, находившихся в почве

Образец

Толщина, мм

Сила прокола, Н

Прочность при разрыве (продольное направление), МПа

Прочность при разрыве (поперечное направление), МПа

февраль

апрель

сентябрь

февраль

апрель

сентябрь

февраль

апрель

сентябрь

1

0,012

0,12

0,12

0,10

9,57

9,43

7,83

5,11

5,00

4,00

2

0,010

0.20

0,20

0,15

11,08

10,59

9,04

7,88

6,74

6,47

3

0,015

0,32

0,25

0,20

19,22

12,28

9,97

8,75

7,71

3,95

4

0,012

0,50

0,45

0,25

67,89

66,94

29,98

24,32

17,75

9,33

5

0,018

0,50

0,25

0,10

28,11

17,53

9,21

26,25

8,02

5,41

6

0,011

0,60

0,25

0,10

33,64

22,06

12,72

21,55

15,39

6,18

Таблица 2

Результаты испытаний образцов, находившихся в климатически камере

Образец

Толщина, мм

Сила прокола, Н

Прочность при разрыве (продольное направление), МПа

Прочность при разрыве (поперечное направление), МПа

февраль

апрель

сентябрь

февраль

апрель

сентябрь

февраль

апрель

сентябрь

1

0,012

0,12

0,11

0,09

9,57

8,71

5,64

5,11

4,64

3,83

2

0,010

0.20

0,20

0,15

11,08

10,31

9,21

7,88

6,79

3,40

3

0,015

0,32

0,30

0,20

19,22

18,66

9,64

8,75

7,93

3,43

4

0,012

0,50

0.45

0,30

67,89

51,17

22,29

24,32

16,89

6,17

5

0,018

0,50

0,47

0,25

28,11

20,89

7,06

26,25

10,94

5,21

6

0,011

0,60

0,40

0,10

33,64

22,87

13,62

21,55

15,82

8,91

На рисунках 2–7 представлены результаты изменений механических показателей.

Рис.2. Изменение силы прокола образцов плёнок во времени при выдержке их в почве

Рис. 3. Изменение силы прокола образцов плёнок во времени при выдержке их в климатической камере

Рис. 4. Изменение прочности при разрыве образцов плёнок, вырезанных в продольном направлении, во времени при выдержке их в почве

Рис. 5. Изменение прочности при разрыве образцов плёнок, вырезанных в продольном направлении, во времени при выдержке их в климатической камере

Рис. 6. Изменение прочности при разрыве образцов плёнок, вырезанных в поперечном направлении, во времени при выдержке их в почве

Рис. 7. Изменение прочности при разрыве образцов плёнок, вырезанных в поперечном направлении, во времени при выдержке их в климатической камере

Наибольшие изменения прочностных характеристик произошли у образцов №№ 4–6 как в условиях повышенной влажности и температуры, так и в почве.

С целью исследования изменения тепловых характеристик полимеров в процессе разложения был проведён синхронный термический анализ образца № 6 (как образца с существенным снижением прочностных свойств) в исходном состоянии и после пребывания в течение 8 месяцев в условиях повышенной влажности и температуры и в почве. Испытания проводились на приборе синхронного (совмещённого) термогравиметрического анализа и дифференциальной сканирующей калориметрии (ТГ-ДТА/ДСК) STA 449 F3 Jupiter фирмы «Netzsch»(Германия) при следующих условиях: температурная программа – нагрев от 30°C до 600°C, скорость нагрева – 10 К/мин, атмосфера – аргон, 20 мл/мин, тигли алюминиевые (с крышками) [2]. Кривые, полученные методом дифференциальной сканирующей калориметрии (ДСК), представлены на рисунке 8.

Рис. 8. Кривые ДСК для образца № 6: 1 – в исходном состоянии, 2 – после пребывания в течение 8 месяцев в условиях повышенной влажности и температуры, 3 – после пребывания в течение 8 месяцев в почве

На кривых ДСК (рисунок 8) присутствует несколько эндотермических пиков. Первые пики соответствуют расплавлению полимера, последующие – разложению полиэтилена и других органических составляющих. В результате проведённых исследований было установлено, что температура плавления практически не изменилась (около 121°C), при этом температура разложения полимеров, подвергшихся воздействию различных факторов окружающей среды, существенно снизилась: для образца в исходном состоянии она составляла 453,1°C, после 8 месяцев выдержки в климатической камере она стала равной 443,2°C, после 8 месяцев пребывания в почве температура разложения уменьшилась до 425,5 °C. Это указывает на снижение молекулярной массы полимера и на его деструкцию.

Анализируя полученные результаты, можно судить о разложении материалов. За период проведения исследований (8 месяцев) произошло значительное снижение физико-механических характеристик упаковочных материалов. У некоторых образцов это снижение составило 70–80 %. Меньше всего подверглись разложению образцы под номерами 1 и 2, причём как в почве, так и в климатической камере. Изменение прочностных характеристик для них составило 18–41 %. Снижение механических показателей у образцов, находящихся в климатической камере, происходит несколько быстрее, чем у образцов в почве.

Рецензенты:

Медяник Н.Л., д.т.н., профессор, зав. кафедрой химии ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова», г. Магнитогорск;

Стеблянко В.Л., д.т.н., доцент, профессор кафедры химии ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова», г. Магнитогорск.