Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

INTRAMEDULLARY NAIL FOR OSTEOSYNTHESIS EXTRA-ARTICULAR FRACTURES OF THE UPPER THIRD OF THE FEMUR

Kauts O.A. 1 Barabash A.P. 1 Ivanov D.V. 2 Barabash Y.A. 1 Grazhdanov K.A. 1 Rusanov A.G. 1
1 FBSI “SarNIITO” of Ministry of Health of Russian Federation
2 SSU im. N.G.Chernyshevsky
This work is devoted to our developed intramedullary nail fixation for extra-articular fractures of the upper third of the femur (RF patent №146659), lighting design features and the effectiveness of its application in traumatology and orthopedics. For no objective evidence of the effectiveness of the developed intramedullary nail it was built three-dimensional model of the rod in the CAD system SolidWorks and made the study of rigidity and stability of fracture fixation, depending on the different types of loads: axial (700 N), transverse (100 N) and torque (10 N) at subtrochanteric fractures of the femur (type 32-1A). In the study of the stability of "bone-lock" system revealed that the calculated loads developed by intramedullary rod has sufficient rigidity and stability of fixation of fractures of the proximal third of the femur.
intramedullary nail fixation
osteosynthesis
fracture
femur
modeling

Проблема хирургического лечения внесуставных (околосуставных) переломов проксимальной трети бедренной кости продолжает оставаться актуальной для травматологов-ортопедов. Это обусловлено, прежде всего, тем, что по данным разных авторов, частота их в настоящее время составляет от 9 % до 45 % в структуре повреждений опорно-двигательного аппарата и от 20 до 38 % от всех переломов бедра [1,7]. Остеопоретические изменения костей скелета после 60-ти лет достигают 72 %, что обуславливает истончение кортикального слоя костей и приводит к хрупкости кости и переломам даже при незначительной травме [6]. Консервативное лечение утратило свою актуальность в связи с неудовлетворительными результатами в 70–75 % наблюдений [4,5]. Однако, несмотря на использование активной хирургической тактики, неудовлетворительные исходы лечения наблюдаются у 16–40,1 % больных [8]. Улучшение исходов лечения больных, повышение социальной адаптации и качества их жизни являются основной задачей, стоящей перед хирургами.

Каждый вид остеосинтеза (чрескостный, накостный и интрамедуллярный) активно применяется в клинике, и у каждого имеются как преимущества, так и недостатки перед другими. Оптимальной выбор вида остеосинтеза и типа фиксатора определяет не только исходы лечения пациентов, но и качество их жизни [9,10].

В настоящее время наибольшую популярность среди хирургов приобрёл интрамедуллярный остеосинтез с блокированием. Известны различные конструкции интрамедуллярных устройств для остеосинтеза проксимального отдела бедренной кости (авторские свидетельства SU на изобретения №662082, №405543, 1595494, патент RU на изобретение №2289351), а также интрамедуллярных устройств, широко используемых в нашей стране, выпускаемых зарубежными производителями (PFN, PFN-A, Gamma Nail, Affixus). Все они имеют схожую конструкцию, включающую протяженный цилиндрообразный корпус и блокирующие элементы фиксации. Среди преимуществ выделяют малоинвазивность метода, возможность осуществления остеосинтеза закрыто, возможность применения при многооскольчатых переломах подвертельной области, при застарелых переломах и псевдоартрозах, высокую прочность фиксации, обеспечивающую раннюю мобильность пациентов [2,3].

Решение проблемы видится нам в совершенствовании конструкций для остеосинтеза, использовании малоинвазивных методик, сокращении времени операции за счёт упрощения и уменьшения её этапов, а при наличии застарелых или несросшихся переломов использование методов стимуляции остеогенеза.

Цель исследования. Улучшение лечения пациентов с околосуставными переломами верхней трети бедренной кости за счёт использования разработанного интрамедуллярного стержня.

Материалы и методы

При разработке нового интрамедуллярного устройства ставились задачи избежать неудобства укладки пациента и трудоёмкости репозиции перелома, упростить подходы к введению стержня, исключить внутрисуставное введение блокирующих элементов, уменьшить число этапов оперативного вмешательства и тем самым сократить время пребывания пациента на операционном столе.

Рис. 1. А – общий вид интрамедуллярного устройства, Б – вид устройства, установленного в бедренную кость

Разработанное интрамедуллярное устройство для остеосинтеза околосуставных переломов верхней трети бедренной кости состоит из протяженного цилиндрообразного корпуса. Проксимальный конец корпуса выполнен изогнутым под углом порядка 20–30° к продольной оси устройства. Корпус выполнен с плавно увеличивающимся до 1,5–2 раз диаметром в сторону проксимального конца на протяжении 1/3 длины устройства. Со стороны проксимального конца расположен сквозной косопоперечный канал, через который вводится стержень-шило для проксимальной блокировки устройства. Сквозной косопоперечный канал расположен под углом 40–45° к продольной оси корпуса и соединен с его центральным каналом. В дистальном конце стержня предусмотрены поперечные каналы для обеспечения дистального блокирования устройства.

Возможность смещения точки введения устройства на область большого вертела за счет изгиба проксимального конца корпуса и выполнения косопоперечного канала под определенными углами к продольной оси устройства упрощает процесс установки стержня-шила и устройства в костномозговой канал бедренной кости. Стержень-шило выполняет роль проксимального блокирующего элемента и одновременно винта-заглушки, что уменьшает число разборных деталей устройства и снижает трудоемкость хирургического вмешательства, а также экономит время его проведения. Конструктивные особенности выполнения блокирующего элемента в виде стержня-шила позволяет осуществить дополнительную компрессию по линии перелома при его упоре на дугу Адамса, являющейся наиболее прочной зоной бедренной кости, за счет перемещения корпуса устройства в краниальном направлении, что способствует уменьшению диастаза между фрагментами перелома, и ускорению сроков формирования костного регенерата.

Для подтверждения жёсткости и стабильности фиксации перелома разработанным интрамедуллярным фиксатором было проведено исследование напряженно-деформированного состояния системы кость-фиксатор при разных типах нагружений.

При моделировании предполагалось, что имплантаты изготовлены из нержавеющей стали с модулем Юнга 1.93∙1011 Па и коэффициентом Пуассона 0.33. Разброс модулей упругости костной ткани достаточно велик. Это объясняется различием в методах исследования, способом подготовки образцов и т.п. Тем не менее большинство исследователей приходят к выводу, что модуль упругости трабекулярной кости на 20–30 % ниже модуля упругости кортикальной кости. Механические параметры трабекулярного и кортикального слоев были взяты из литературы. Считалось, что материалы фиксаторов и костной ткани являлись изотропными идеально-упругими. Такое предположение оправдано и используется другими авторами, когда проводится сравнительный анализ различных имплантатов с точки зрения механики. При расчетах учитывались большие деформации, которые могут возникать как в костной ткани, так и в фиксаторах, то есть постановка задачи включала геометрическую нелинейность.

Численные расчеты проводились в системе Ansys (ANSYS, Inc.) 15.0 с использованием среды Workbench. Решались статические задачи о нагружении систем кость-фиксатор тремя типами нагрузок, прикладываемых к головке кости. Дистальный конец кости жестко закреплялся. При постановке и решении задач о взаимодействии костных отломков и фиксаторов между ними учитывалось контактное взаимодействием без трения. Резьба винтов не моделировалась. Между блокирующими винтами и костными отломками задавался контакт типа «bonded», исключающий их взаимное перемещение и скольжение.

Трехмерная модель стержня с проксимальным блокирующим винтом-шилом была построена на основе чертежей и текстового описания патента РФ №146659 «Интрамедуллярное устройство для остеосинтеза переломов верхней трети бедренной кости» в системе автоматизированного проектирования SolidWorks.

Основные размеры стержня, его внешний вид показаны на рисунке 2.

Рис. 2. А – линейные размеры и углы модели предлагаемого стержня, Б – трехмерное изображение проксимальной части модели стержня

Длина стержня составила 170 мм, диаметр в дистальном отделе 9 мм, диаметр проксимального торца равнялся 16 мм.

Этот стержень применим для остеосинтеза следующих типов переломов по классификации АО: межвертельные переломы (31-А3), высокие подвертельные переломы (32-А1).

Результаты и их обсуждение. Произведён расчет статических задач теории упругости, описывающих контактное взаимодействие систем кость-фиксатор при трех видах нагрузок: осевая (700 Н), поперечная (100 Н) и скручивающая (10 Н) при подвертельном переломе (тип 32-1А). Приведем результаты для напряженно-деформированного состояния системы кость-стержень разработанного интрамедуллярного фиксатора при трех исследованных нагрузках (рисунок 3).

Рис. 3. Поля перемещений для разработанного интрамедуллярного стержня трех рассмотренных нагрузок (слева-направо: осевая, поперечная сила и скручивающий момент)

При анализе максимального перемещения костных отломков для каждого вида нагрузки можно отметить достаточную стабильность перелома при осевой и поперечной нагрузках (1,4 и 2,3 мм соответственно). В случае скручивающего момента максимальные перемещения головки бедра для нового стержня составляют 1,1 мм.

Далее были проанализированы эффективные напряжения, возникающие в анализируемом интрамедуллярном стержне (рисунок 4).

Рис. 4. Эффективные напряжения в интрамедуллярном стержне с проксимальным винтом-шилом (слева-направо: осевая сила, поперечная сила, скручивающий момент)

При анализе эффективных напряжений можно отметить следующие закономерности. Для исследуемого нового интрамедуллярного стержня наибольшие напряжения обнаруживаются на блокирующих винтах, а также в теле стержня. Максимальные эффективные напряжения выявлены при скручивающей нагрузке и составили 557 Мпа. При осевой и поперечной нагрузке максимальные напряжения составили 443 Мпа и 295 Мпа соответственно.

Выводы

1. Компьютерное трёхмерное моделирование с использованием специализированных программных продуктов оказывает значительную помощь в определении стабильности и жёсткости фиксации вновь предлагаемых металлоконструкций для остеосинтеза переломов.

2. При анализе цифровых данных, полученных в результате компьютерного трёхмерного моделирования и исследования стабильности системы «кость-фиксатор», выявлено, что при рассчитанных нагрузках разработанный интрамедуллярный стержень имеет достаточную жесткость и стабильность фиксации переломов проксимальной трети бедренной кости и после прохождения сертификации может быть рекомендован для использования к клинической практике.