Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

THE ROLE OF APOPTOSIS INDUCED BY THE HEAVY METALS IN THE DEVELOPMENT OF AUTOIMMUNE DISEASES

Polyakova V.S. 1 Nikolaeva T.V 1 Setko N.P. 1 Voronina L.G. 1
1 Orenburg State Medical University, Ministry of Healthcare of the Russian Federation
The article provides an overview of published data on the cellular signaling pathways of apoptosis. The mechanism of activation of the caspase cascade through the inner mitochondrial, intrinsic pathway mediated by the endoplasmic reticulum and the external receptor pathway activation. Based on the literature, the mechanisms of activation of apoptosis by heavy metals were described. It is found that the effect of nickel salts activates apoptosis by mitochondrial translocation from mitochondria into the cytoplasm of cells cytochrome c and AIF, with subsequent activation of caspase-9 and caspase-3, increases mRNA expression of pro-apoptotic Bax and Bak proteins while reducing the mRNA expression of proteins exhibiting anti-apoptotic activity of Bcl-2, Bcl-XL and Mcl-1 activates transcription of genes encoding proteins Fas, FasL and caspase-8. Effects of nickel salts leading to activation of the signaling pathway mediated by the endoplasmic reticulum. Activation of apoptosis under the influence of salts of lead is due to the increased generation of reactive oxygen species, changes in the transcription of apoptotic proteins Bcl-2, Bax and caspase-3. Apoptosis is caused by activation of the outer and inner mitochondrial apoptosis pathways. Activation of apoptosis by compounds of hexavalent chromium is associated with increasing intracellular reactive oxygen species that activate apoptosis by p53-dependent and p53-independent internal path. Wherein the core is p53-dependent increase in the expression of pro-apoptotic proteins. Activation of apoptosis, accompanying of autoantigens externalization, provided inefficient removal of apoptotic material can promote autoimmunity.
apoptosis
heavy metals
activation of apoptosis
autoimmunity

Организм человека находится в постоянном динамическом взаимодействии с окружающей средой, содержащей более 60 металлов и металлоидов [36]. Воздействие металлов на живые организмы оказывает влияние, в ряде случаев превосходящее возможности фенотипической изменчивости или физиологической акклиматизации, но не генетической адаптации [6], и способствует возникновению хронических заболеваний [25], в том числе аутоиммунной природы [12, 20, 24].

На клеточном и организменном уровне металлы оказывают специфическое биологическое влияние, складывающееся из сложного взаимодействия с ДНК, белками и биомолекулами [13]. Общий механизм токсичности, обусловленной металлами, заключается в способности генерировать активные формы кислорода АФК и модулировать активность ферментов [33].

В работах отечественных и зарубежных учёных доказана возможность модуляции апоптоза окислительным стрессом [2, 30]. Индукция апоптоза при окислительном стрессе, вызванном ионами металлов, опосредована активацией NF-κB, р53 [1, 51], повреждением ДНК [35] с одновременным угнетением двухвалентными ионами Cd2+, Ni2+ и Zn2+ активности гликозилаз, распознающих повреждения в геноме и участвующих в репарации ДНК [53]. Вместе с тем представляет интерес непосредственное влияние металлов на апоптотическую гибель клеток и механизмы, посредством которого реализуется апоптоз.

Апоптоз, основной механизм запрограммированной гибели клеток, имеющий фундаментальное значение для регуляции роста, дифференцировки тканей, поддержания гомеостаза и иммунологической толерантности [3, 28].  Известно, что функциональная активация каспаз играет решающую роль в процессе апоптозе клеток млекопитающих [14]. Эффекторные каспазы 3, 6 и 7 вызывают распад структур, необходимых для поддержания целостности клеточных и субклеточных компонентов [48]. При этом клетки подвергаются ряду хронологически упорядоченных морфологических изменений: уменьшение  клетки в размерах, уплотнение её цитоплазмы, более компактное расположение органелл; конденсация хроматина, которая  происходит под ядерной мембраной, по периферии, при этом образуются четко ограниченные плотные массы различной формы и размеров – два или несколько фрагментов будущих апоптотических телец;  образование  глубоких инвагинаций  клеточной поверхности с образованием полостей, приводящих к фрагментации клетки и формированию окруженных мембраной апоптотических телец,  состоящих из фрагментов цитоплазмы с плотно расположенными  органеллами и компонентов  ядра [28, 63]; фагоцитоз апоптотических  телец, осуществляемый окружающими здоровыми клетками, чаще всего макрофагами [42].

Активация каспаз осуществляется с помощью трех известных апоптотических сигнальных путей: внутреннего пути, опосредованного митохондриями; внутреннего пути, опосредованного эндоплазматическим ретикулумом [17, 31], и внешнего рецептор-опосредованного пути.

Внешний путь активируется связыванием лигандов смерти с мембранными рецепторами смерти [38], к которым относятся рецептор TNF 1 типа  (TNFR1), Fas-рецептор (CD95) и другие [37] с соответствующими лигандами – лигандом TNF и Fas-лигандом (FasL) [21]. Активация рецепторов смерти приводит к привлечению адапторных белков, включая TNF-рецептор-ассоциированный домен смерти (TRADD – TNF receptor-associated death domain) и Fas-ассоциированный домен смерти (FADD – Fas-associated death domain) [26]. Формирование комплекса лиганд-рецептор-адаптерный белок рассматривается как смерть-индуцирующий сигнальный комплекс (DISC-death-inducingsignalingcomplex), который инициирует сборку и активацию про-каспазы-8, которая инициирует каскад эффекторных каспаз [54].

Термин «внутренний путь» относится к инициации пути апоптоза в клетке в результате ряда внутренних раздражителей, например, генетических повреждений, окислительный стресс, и гипоксию [54]. Регуляция этого пути осуществляется группой белков, принадлежащих к семейству Bcl-2 [9]. Белки Bcl-2, Bcl-W, Bcl-XL, MCL-1 и Bfl-1 подавляют апоптоз,  блокируя митохондриальное высвобождение цитохрома-с. Стимулируют апоптоз p53-зависимые проапоптотические белки Bik, Bcl-Xs, Bad, Bax, Bak, Bid, Bim и Hrk, увеличивающие проницаемость митохондрий и выход из них в цитоплазму цитохрома-с [9,  47]. Соотношение про- и анти-апоптотических белков определяет судьбу клетки [9]. Высвобождение в цитоплазму цитохрома-С приводит к активации каспазы-3 посредством образования апоптосомного комплекса, состоящего из цитохрома-с, Apaf-1 (apoptoticproteaseactivatingfactor 1) и каспазы-9 [15, 16]. Модулировать апоптоз могут ряд высвобождаемых из митохондрий в цитоплазму белков: AIF (apoptosis inducing factor), Smac (second mitochondria-derived activator of caspase), DIABLO (direct IAP Binding protein with Lowp I) и другие [16]. Они  связывают супрессоры апоптоза – белки семейства IAP (inhibitorofapoptosisprotein), которые в свою очередь способны ингибировать каспазы-3, -7 и -9 [41].

Внутренний путь, опосредованный эндоплазматическим ретикулумом, является у мышей каспаза-12-зависимым, у человека – каспаза-4-зависимым [29, 31, 50]. От поддержания гомеостаза эндоплазматической сети зависят ряд выполняемых ею жизненно важных функций. Дисгомеостаз при гипоксии, активации свободнорадикального окисления, недостатке глюкозы, нарушении синтеза белка и других состояниях, адапторный белок TRAF2 (TNF receptor associated factor 2) диссоциирует из прокаспазы-12 и запускает апоптоз, опосредованный эндоплазматическим ретикулумом [46, 50].

Как внутренние и внешний пути объединены активацией эффекторной каспазы-3. Каспаза-3 расщепляет ингибитор каспаза-активировируемой дезоксирибонуклеазы, которая ответственна за ядерный апоптоз [52]. Возникающее в дальнейшем каспаза-зависимое расщепление протеинкиназ, белков цитоскелета, белков репарации ДНК и других приводят к типичным для апоптоза морфологическим изменениям [28, 63].

В ряде экспериментальных исследований установлен модулирующий эффект на процесс апоптотической гибели клеток таких металлов, как никель, хром, свинец и других [8, 17, 49].

В отдельных исследованиях показано, что одним из возможных молекулярных механизмов токсичности никеля является активация апоптоза [49, 58]. Показано, что воздействие солей никеля активирует апоптоз по митохондриальному пути с транслокацией из митохондрий в цитоплазму клеток цитохрома С и AIF, с последующей  активацией каспазы-9 и каспазы-3 [47, 62]. Установлено, что введение животным хлорида никеля увеличивает экспрессию мРНК проапоптотических белков Bax и Bak с одновременным уменьшением экспрессии мРНК белков, проявляющих антиапоптозную активность Bcl-2, Bcl-XL и Mcl-1 в клетках разных тканей [18, 49]. Результаты Zhao J. et al. (2009) предполагают, что металлические частицы никеля могут индуцировать Fas-опосредованный апоптоз в клеточной линии JB6 [62]. Guo H. et al. (2015) установили повышенные уровни транскрипции генов, кодирующих белки Fas, FasL и каспазы-8 при воздействии хлорида никеля [18]. Активированная каспаза-8 активирует каспазу-3, которая затем вызывает апоптоз [55]. Zhao J. et al. (2009) также сообщили, что частицы никеля могут увеличивать экспрессию Fas и каспазы-8 в клеточной линии JB6 [62]. Установлено также, что ацетат никеля может вызвать стресс эндоплазматического ретикулума и повышать экспрессию белка гомологичного C/EBP (CCAAT/enhancerbindingprotein) – CHOP (C/EBPhomologousprotein) в клеточных линиях NRK52E и Гепа-1c1c7 [22], активируя сигнальный путь апоптоза, опосредованный эндоплазматическим ретикулумом.

Свинец оказывает многопрофильное токсическое действие, обусловленное генерацией активных форм кислорода [8], вызывающих повреждение клеточных биомолекул [27] и индуцирующих апоптоз [11, 57]. Участие генерации активных форм кислорода в процессе апоптоза обусловлено изменением транскрипции апоптотических белков в клетках [11, 27]. При воздействии ацетата свинца установлена активация внешнего и внутреннего путей апоптоза и значительное снижение жизнеспособности мышиных гепатоцитов [11]. Ряд исследователей установили, что при воздействии солями свинца происходит активация каспазы-3, обусловливающей апоптоз в различных типах клеток [5, 56]. Yuan G. et al. (2014) показали, что воздействие малых доз свинца вызывает апоптоз клеток печени и почек апоптоз, что, по мнению авторов, связано с повреждением митохондрий и изменением в уровнях апоптогенных белков, включая Bcl-2, Вах и каспазы-3 [60].

Активацию апоптоза при воздействии соединений шестивалентного хрома связывают с внутриклеточным увеличением активных форм кислорода [61], которые активируют апоптоз по p53-зависимому и p53-независимому внутреннему пути, при этом основным является p53-зависимое увеличение экспрессии проапототических белков [19,  61]. Механизмы p53-зависимого апоптотического пути при воздействии соединений шестивалентного хрома достаточно полно описаны, то о механизмах реализации p53-независимого пути известно немного. Hayashietal. (2004), используя клеточную линию с нулевой мутацией гена p53, установили, что при обработке клеток соединением шестивалентного хрома наблюдались морфологические изменения ядер и фрагментация ДНК, кроме того, возрастал внутриклеточный уровень кальция и супероксид аниона, низкий потенциал митохондриальных мембран и высокая активность эффекторной каспазы-3. Важно отметить, что при возрастании внутриклеточного уровня кальция активируются нейтральные протеазы – кальпаины, способные в свою очередь активировать каспазу-3. Установлено, что индукции шестивалентным хромом апоптоза принимают участие кальций-кальпаин-зависимый путь и митохондриальный путь апоптоза. При этом установлено отсутствие экспрессии Fas, т.е. активации внешнего сигнального пути апоптоза [19].

Для поддержания аутотолерантности и предотвращения аутоиммунных реакций важное значение имеет эффективное удаление апоптотических клеток [32, 34, 42], осуществляемое как профессиональными макрофагами, так и непрофессиональными фагоцитами (фибробластами, эндотелиальными и эпителиальными клетками) [42]. Известно, что в процессе апоптотической гибели клеточные аутоантигены перемещаются на поверхность апоптотических клеток [59]. Предполагается, что экстернализация аутоантигенов в условиях активации апоптоза приводит к перегруженности фагоцитарной системы и невозможности эффективного удаления апоптотического материала, что способствует разрушению аутотолерантности [40, 43].

Исследования отдельных авторов свидетельствуют о взаимосвязи между апоптозом и возникновением аутоиммунного ответа посредством дисрегуляции апоптоза [39, 44, 45] или неэффективного удаления апоптотических клеток [28].

Ключевой характеристикой апоптоза является отсутствие воспалительной реакции при фагоцитозе аптототических тел [4]. Это объясняется секрецией ингибированием моноцитами секреции провоспалительных цитокинов ИЛ-1β, IL-8, гранулоцитарно-макрофагального колониестимулирующего фактора, и TNF-α после фагоцитоза апоптотических клеток с одновременным увеличением секреции цитокинов, оказывающих противоспалительные эффекты, таких как TGF-1 и ИЛ-10 [10, 23]. Нарушение утилизации апоптотических клеток, в частности, при аутоиммунных заболеваниях, способствует секреции провоспалительных цитокинов [7].

Таким образом, тяжелые металлы способны активировать апоптоз различными сигнальными путями. Дисрегуляция апоптоза, сопровождающаяся избыточным образованием апоптотических клеток, экстернализацией аутоантигенов и их накоплением при избыточном апоптозе, в сочетании с дефектами утилизации апоптотического материала может участвовать в патогенезе аутоиммунных заболеваний.