Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

THE STUDY OF THE PARAMETERS OF DNA COMETS IN HEALTHY DONORS UNDER DIFFERENT RESIDENTIAL RADIATION PARAMETERS

Larionov A.V. 1 Volobaev V.P. 1 Serdyukova E.S. 1
1 Kemerovo State University
The study of DNA fragmentation parameters by the DNA comet method in alkaline modification under conditions of different levels of exposure to the radiation factor in domestic conditions was carried out. The volume activity (OA) of radon, gamma radiation equivalent dose rate (AEDA) and beta-radiation flux density were taken into account. The average value of OA radon in the indoor air was 89.4 Bq / m3, the gamma-background gamma-background value was 0.12 mkSv / h, and the beta-flux density was 0.6 s-1. The average level of DNA fragmentation was 3.48%. The level of DNA fragmentation by 3 indicators (the proportion of DNA in the tail of the comet, the length of the comet's tail, the moment of the comet's tail) was elevated in men, but this trend did not reach statistical significance. The parameters of the DNA comets did not differ significantly depending on the level of radon changes. A positive correlation of the parameters of the DNA comets with an increase in the gamma radiation power was found. At the same time, the AED of gamma radiation was within the permissible limits in all the surveyed rooms.
ionizing radiation
radon
dna comet
alkaline modification of dna comets
effects of low radiation doses

Воздействие радона хорошо изучено в диапазоне высоких концентраций. Установленные гигиенические нормативы предусматривают уровень эквивалентной равновесной объемной активности (ЭРОА) в 200 Бк/м3 как границу допустимой объемной активности радона в воздухе жилых помещений. В то же время в ряде стран допустимый уровень увеличен до 400 Бк/м3, что объясняется, прежде всего, геологическими особенностями территории. С другой стороны, существует точка зрения о необходимости снижения допустимого уровня до 2 пКю/л, что соответствует 74 Бк/м3. В рамках современной парадигмы ВОЗ и принципа линейного беспорогового увеличения радиационных эффектов даже небольшое радиационное воздействие приводит к увеличению риска возникновения стохастических эффектов (прежде всего онкозаболеваний).

Очевидно, что небольшие радиационные эффекты, воздействующие на большие группы людей, могут приводить к социально значимому увеличению частоты онкологической заболеваемости [1]. Вследствие этого представляется крайне актуальным накопление информации об эффектах действия различных типов ионизирующего излучения в малых дозах, которому подвержено в той или иной степени все население планеты. Увеличение ЭРОА радона выше 200 Бк/м3 признается нежелательным для большинства принятых нормативов в области радиационной гигиены. В то же время лишь 5-10% жилых помещений можно отнести к помещениям с таким уровнем воздействия. Уровень объемной активности (ОА) радона в 2 пКю/л (74 Бк/м3) и выше может отмечаться в 20-50% жилых помещений в зависимости от типа застройки и географического расположения. Очевидно, что даже малоинтенсивное воздействие радона может приводить к значимому увеличению заболеваемости, учитывая глобальные масштабы проблемы. Представляется актуальным исследование влияния низкодозовых нагрузок плотноионизирующего излучения на организм человека.

Радон признается в настоящее время одним из наиболее опасных канцерогенов, действующих на человека. В природе радиационный радоновый фактор не играет существенной роли, поскольку газ радон рассеивается в большом объеме воздуха и достаточно быстро распадается (период полураспад Rn222=3,82 суток). В то же время жилые и технические постройки представляют собой своеобразные ловушки, накапливающие радон (до 10 крат в сравнении с открытым воздухом). Очаги выделения радона часто располагаются спорадически, радон рассматривается в качестве ведущей причины повышения частоты хромосомных аберраций в схожих экспонированных группах [2].

Одним из эффективных методов биомониторинга является прямая оценка степени повреждения ДНК в клетках крови методом «ДНК-комет» (гель-электрофорез отдельных клеток). Данный метод предусматривает лизис клеток, помещенных в агарозный гель, при этом ДНК мигрирует в электрическом поле. Клетки с увеличенной частотой двойных разрывов характеризуются увеличением миграции ДНК к аноду. В 1988 году в работе Singh и коллег была предложена щелочная модификация метода, включающая этап лизиса при рН>13 [3]. Данная версия значительно повышает чувствительность метода, позволяя выявлять одиночные разрывы, щелочелабильные сайты, сшивки ДНК-ДНК и ДНК-белок, а также сайты незавершенной репарации [4]. Поскольку для большинства генотоксикантов преобладают эффекты одиночных разрывов ДНК, щелочная модификация метода позволила существенно увеличить информативность и чувствительность теста. Одно из главных преимуществ – возможность выявить генотоксическое воздействие в условиях одновременного действия цитотоксических факторов, которые приводят к формированию хромосомных нарушений, но не обладают генотоксическим действием. В условиях рН>12 ДНК денатурирует, и нити расплетаются вследствие разрушения водородных связей между 2 спиралями. При достижении рН 12,6 щелочелабильные сайты, например апуриновые/апиримидиновые сайты, трансформируются в одиночные разрывы ДНК. При рН>13 достигается максимальная степень трансформации щелочелабильных сайтов.

Материалы и методы

Характеристика выборки

Каждый обследованный заполнял персональную анкету, включавшую информацию о возрасте, состоянии здоровья, употреблении табака и алкоголя, производственных вредностях, рентгенодиагностических процедурах, авиаперелетах, прививках и приемах лекарственных препаратов в течение 3 месяцев, предшествующих обследованию. Была отобрана группа из 39 обследованных, не подвергавшихся потенциально генотоксическим факторам. Все обследованные были не старше 40 лет. Всего было обследовано 18 мужчин (средний возраст 29 лет) и 21 женщина (средний возраст 31 год).

Исследование проводили в соответствии с требованиями Комиссии по этике Кемеровского государственного университета, протокол исследования утвержден на заседании Комиссии № 4 от 10.10.2016 г. Каждый участник подписывал форму информированного согласия, содержащую информацию о целях исследования.

Образцы биоматериала

Образцы венозной крови собирались в вакуумные пробирки емкостью 4 мл, содержащие натрий-ЭДТА в качестве антикоагулянта. Сбор материала происходил в период с ноября 2016 г. по апрель 2017 г. В течение 1-2 часов образцы переправлялись лабораторию. Все образцы кодировались и обрабатывались. Выполнение метода «ДНК-комет» начиналось немедленно после поступления образцов.

Гель-электрофорез отдельных клеток (метод «ДНК-комет»)

Метод «ДНК-комет» выполнялся в щелочной модификации, разработанной Singh с коллегами [3]. Первый слой геля представлял собой 1% раствор стандартной агарозы (Applichem, США). Для нанесения клеток использовали 1% агарозу с низкой температурой плавления (low melting point agarose, Applichem, США) при 39 °С. 70 мкл взвеси клеток крови в легкоплавкой агарозе вносили на стекло со стандартной агарозой и помещали на лед до полного застывания геля. После застывания стекла помещали в лизирующий буфер при температуре 4 °С на 12 часов. Состав лизирующего буфера: 2,5 моль/л NaCl («Вектон», Россия), 0,1 моль/л Nа2ЭДТА («Вектон», Россия), 1% Тriton Х-100 (Amresco, США), 10% ДМSO («Вектон», Россия). После лизиса проводился горизонтальный электрофорез (300 мА, 25 В, 30 мин.) в щелочном буфере (pH>13). Электрофорезу предшествовала 20-мин. обработка щелочным буфером (300 мМ NaOH («Вектон», Россия), 1 мМ Nа2ЭДТА («Вектон», Россия). Лизис и электрофорез проводился при 4 °С при отсутствии прямых солнечных лучей. После электрофореза стекла троекратно нейтрализовали в фосфатно-солевом буфере PBS рН 7,5 (Amresco, США). После этого стекла обрабатывались 70% этанолом в течение 5 минут. Препараты высушивались и окрашивались 50 мкл однократного SYBR GREEN («Биотех-Индустрия», Россия).

Анализ «комет»

Оценка параметров фрагментации проводилась путем микрофотографирования препаратов, окрашенных SYBR GREEN, с помощью микроскопа Zeiss Axio Imager 2. Всего фотографировалось 100 случайно отобранных комет от каждого исследованного образца при увеличении х400. Последующая обработка фотографий проведена с помощью комплекта ПО CASP [5]. Рассчитывались параметры длины хвоста кометы, момента хвоста, а также доля ДНК в хвосте кометы.

Статистические методы

Статистический анализ данных проводили с использованием пакета Statistica 10.0. Для количественных показателей рассчитывались средние значения и пределы 95% доверительного интервала (CI 95). Сравнение групп выполняли с использованием U-теста Манна-Уитни. Степень значимости была принята на уровне 5%. Корреляцию между показателями для случая непараметрических данных рассчитывали с использованием коэффициента корреляции Пирсона для рангов. При этом для выборок более 50 человек также рассчитывали значение критерия Стьюдента, основанное на значении коэффициента корреляции Пирсона [6].

Результаты

Доля ДНК в хвосте кометы не превышала 15%. Среднее значение объемной активности (ОА) радона в воздухе помещений составило 89,4 Бк/м3, значение МАЭД гамма-фона составило 0,12 мкЗв/ч, плотность потока бета-излучения 0,6 с-1. Уровень фрагментации ДНК по 3 показателям был повышен у мужчин, но данная тенденция не достигала статистической значимости (табл. 1).

Таблица 1

Показатели фрагментации ДНК у обследованных мужчин и женщин

Пол

N

Доля ДНК в хвосте кометы, % [95% CI]

Длина хвоста кометы, мкм [95% CI]

Момент хвоста кометы [95% CI]

Муж.

18

3,83 [2,69-4,97]

14,17 [10,85-17,48]

1,21 [0,58-1,84]

Жен.

21

3,17 [2,12-4,22]

12,67 [9,60-15,73]

0,82 [0,23-1,40]

Всего

39

3,48 [2,70-4,35]

13,36 [11,12-15,59]

1,00 [0,57-1,42]

 

В качестве граничного уровня ОА радона в воздухе был выбран уровень 74 Бк/м3, соответствующий 2 пКю/л воздуха. Средняя ОА радона составила 47 Бк/м3 в первой группе и 143 Бк/м3 во второй группе. Наибольшая информативность была установлена для показателя момента хвоста комет. Момент хвоста был повышен в группе с более высоким уровнем радона, но эта тенденция не достигла уровня статистической достоверности (табл. 2). Данная тенденция характерна только для обследованных мужчин.

Таблица 2

Показатели фрагментации ДНК в группах, дифференцированных по полу и ОА радона

ОА радона в воздухе помещений, Бк/м3

N

% ДНК в хвосте кометы [95% CI]

Длина хвоста, мкм [95% CI]

Момент хвоста кометы [95% CI]

Мужчины

< 74

8

3,65 [1,31-6,00]

13,73 [7,45-20,01]

0,94 [0,44-2,31]

> 74

10

3,97 [1,87-6,07]

14,52 [8,90-20,14]

1,43 [0,20-2,66]

Женщины

< 74

12

3,30 [2,29-4,30]

13,21 [9,68-16,74]

0,88 [0,44-1,31]

> 74

9

3,00 [1,84-4,17]

11,95 [7,87-16,02]

0,72 [0,22-1,23]

Всего

< 74

20

3,43 [2,34-4,53]

13,42 [10,25-16,58]

0,90 [0,30-1,51]

> 74

19

3,51 [2,40-4,63]

13,30 [10,05-16,54]

1,09 [0,47-1,71]

 

Также была исследована возможная зависимость показателей ДНК от величины МАЭД гамма-излучения в жилых помещениях. Для проверки был рассчитан коэффициент корреляции между показателями повреждений ДНК и МАЭД гамма-излучения. Была обнаружена положительная корреляция показателей ДНК-комет с увеличением мощности гамма-излучения (рисунок). При этом МАЭД гамма-излучения находилась в пределах допустимых норм во всех обследованных помещениях.

Зависимость показателей фрагментации ДНК от МАЭД гамма-излучения в жилых помещениях (r – коэффициент корреляции Спирмена, p – вероятность «нулевой» гипотезы)

Обсуждение

Радиационное воздействие

Ионизирующее излучение способно индуцировать образование кластеров повреждения ДНК, что реализуется в форме двухцепочечных разрывов и другими повреждениями, расположенными компактно. Редко- и плотноионизирующее излучение вызывает примерно одинаковое количество отдельных ДНК-поражений на единицу поглощенной дозы, но в случае с плотноионизирующим излучением (альфа-частицы) эти поражения распределены в меньшем количестве участков ДНК, что подразумевает увеличение числа повреждений в кластере; например, среднее число повреждений по кластеру, как правило, увеличивается с увеличением линейной передачи энергии [7]. Гамма-излучение, зафиксированное в местах проживания всех обследованных, не превышает регламентированных фоновых значений. Изменения гамма-фона, скорее всего, были вызваны особенностями строений и строительными материалами.

Анализ «комет»

Метод «ДНК-комет» представляет простой и быстрый тест, позволяющий эффективно измерять уровень повреждений ДНК и репарации повреждений, следующей после экспонирования. В данном исследовании не было обнаружено значительной гетерогенности в отношении уровня повреждения ДНК в исследованной популяции. В ряде работ, посвященных биологической дозиметрии, ранее отмечались трудности выявления эффекта малых доз облучения [8; 9]. В то же время в большинстве работ исследовались группы лиц, облученных внешним искусственным источником, например персонал радиологических и рентгенологических установок.

Измерения показателей фрагментации ДНК могут отражать как индивидуальный уровень повреждений ДНК, так и способность к репарации радиационных повреждений. Ранее в ряде работ установлена способность генов репарации модулировать частоту нарушений наследственного материала [10-12]. Наблюдаемая картина повреждений ДНК является результатом равновесия между нарушениями и репарацией ДНК, и низкий уровень повреждений или отсутствие выраженных корреляций может быть результатом как низкого числа повреждений, так и высокой индивидуальной эффективности репарации [13].

По некоторым оценкам, наибольший вклад в увеличение показателей ДНК комет для непроизводственных факторов вносят сезон года (параметры увеличены летом) и медицинское облучение [14]. В нашей работе эти факторы не могут оказывать значимого влияния, поскольку сбор биологического материала проводился в зимний период года, а все лица, проходившие рентгеновские обследования в течение 3 месяцев, предшествующих исследованию, были исключены из выборки. Отсутствие корреляций с объемной концентрацией радона, возможно, объясняется небольшим размером выборки. В дальнейшем планируется продолжение данной линии исследования с увеличением размера выборки.

Заключение

Исследование эффектов длительного воздействия малых доз облучения представляется сложной задачей, необходимость подбора выборок и контроля сопутствующих факторов способна исказить картину. В представленном исследовании не удалось выявить статистически значимых корреляций с показателями объемной активности радона, но в то же время обнаруженные корреляции с показателями гамма-фона указывают на перспективы данного исследования. Очевидна необходимость оценки фактора эффективности репарации обследованных для исследования такого типа, это позволило бы провести дифференцировку и сравнить людей с близкими характеристиками репарации.

Конфликты интересов, связанные с данным исследованием, отсутствуют.

Исследование выполнено при финансовой поддержке РФФИ (№ 16-34-60069\15 мол_а_дк).