Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

CAPILLARY ELECTROPHORESIS AS THE HIGH EFFECTIVE ANALYTICAL METHOD (REVIEW OF THE LITERATURE)

Khomov Yu.A. 1 Fomin A.N. 2
1 Perm state pharmaceutical academy
2 Yaroslavl State Medical Academy
Capillary electrophoresis is the one of the most perspective method of analysis. It is finding increasing use in foreign and domestic analytical practice including the analysis of the medicines on purpose of identification and quantitative determination of native substance and its metabolites in biological samples. The principles and terminology of capillary electrophoresis are presented in the article based on literary data. Estimation of the method and its scope are also given. The quartz capillaries and spectrophotometrical detection in UV area are preferentially use. However electrochemical detection (amperometric and voltamperometric detectors), mass spectrometry, laser fluorescence are finding use. Capillary electrophoresis is applied also for determination of nonvolatile admixtures in medicinal substances. It competes with the HPLC and differs very high efficiency with reducing impairment of quality of the peaks. Increase in quantity of publication in domestic scientific magazines serves as confirmation of significance of the method of capillary electrophoresis.
capillary electrophoresis
principles
method assessment
scope
detection
Метод анализа - капиллярный электрофорез - на сегодняшний день является одним из наиболее перспективных и высокоэффективных методов разделения и анализа сложных смесей на составляющие компоненты и находит всё более широкое применение - особенно в зарубежной аналитической практике, в том числе и лекарственных средств [4, 10, 14, 24]. Метод характеризуется экспрессностью, микрообъемами анализируемого раствора, отсутствием колонки и твёрдого сорбента, проблем с его «старением» (в отличие от ВЭЖХ), физической и химической деструкции и любого неспецифического связывания с ним компонентов пробы, а также практически не требуется органических растворителей [5, 11].

Метод капиллярного электрофореза (КЭФ) основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля за счёт подачи высокого напряжения к концам капилляра.

Наиболее распространёнными вариантами метода КЭФ являются: капиллярный зонный электрофорез (КЗЭ) и мицеллярная электрокинетическая хроматография (МЭКХ).

КЗЭ - метод разделения, реализуемый в капиллярах и основанный на различии в электрокинетических подвижностях заряженных частиц как в водных, так и в неводных электролитах.

МЭКХ - вариант капиллярного электрофореза, который позволяет проводить разделение соединений ионного и нейтрального характера при использовании поверхностно-активных веществ (ПАВ). Разделение электронейтральных соединений осуществляется благодаря введению в состав ведущего электролита поверхностно-активных веществ  - мицеллообразователей. Чаще всего используют анионный ПАВ (например, додецилсульфат натрия - ДДСН) в концентрациях, превышающих критическую концентрацию мицелообразования, что приводит к формированию так называемой «псевдостационарной фазы», и аналиты распределяются между мицеллой и буферным электролитом согласно их гидрофобности.

Термины. Учитывая основной принцип разделения в КЭФ - электромиграционный, была сформирована собственная терминологическая база метода капиллярного электрофореза, которая с 2002 г. рекомендована к использованию ИЮПАК, а также - лежит в основе «Практического руководства по использованию систем капиллярного электрофореза «Капель» [6]. Основные из них:

  • Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра) до зоны детектирования;
  • Электроосмотический поток ЭОП - течение жидкости в капилляре под действием приложенного электрического поля. Время, необходимое жидкости для преодоления эффективной длины капилляра вследствие возникающего ЭОП, называют временем ЭОП (tэоп) и экспериментально определяют из электрофореграммы по времени миграции нейтрального компонента - маркераЭОП.
  • Подвижность ЭОП (μэоп) - представляет собой отношение скорости ЭОП к напряженности электрического поля. Скорость ЭОП положительна при направлении движения жидкости от входного участка капилляра к детектору и отрицательна при обратном направлении. В свою очередь, скорость ЭОП вычисляют по формуле:

νэоп=  Lэфф / tэоп.

Напряженность электрического поля находят по отношению приложенной разности потенциалов (U) к общей длине капилляра (Lобщ). Таким образом, подвижность ЭОП вычисляют из экспериментальных данных по формуле: μэоп = Lобщ х Lэфф / tэоп х U.

При расчете подвижностей длину капилляра выражают в сантиметрах, время миграции в секундах, а разность потенциалов в вольтах. Время миграции как параметр качественного анализа принято выражать в минутах.

  • Электрофоретическая подвижность частицы (μэф) - по аналогии с предыдущей величиной представляет собой следующее отношение:

μэф = Lобщ х Lэфф / tм х U.

В отличие от μэоп электрофоретическую подвижность частицы нельзя определить непосредственно из электрофореграммы, поэтому из результатов эксперимента находят общую подвижность, которая выражается (при положительной скорости ЭОП) в виде следующей формулы:

μобщ = μэоп + μэф

Определив из эксперимента μобщ и μэоп, находят μэф.

Эффективность разделения. Метод капиллярного электрофореза характеризуется высокой эффективностью (более сотни тысяч теоретических тарелок). Это объясняется прежде всего уникальным свойством ЭОП в кварцевом капилляре, который заключается в формировании плоского профиля потока (в отличие от параболического в ВЭЖХ), не вызывающий при движении зон компонентов практически их уширения. Очень высокая эффективность разделения позволяет широко применять метод для выявления не только близких по строению веществ (белков, пептидов, аминокислот, наркотиков, витаминов, красителей и др.), но и для контроля качества, технологического контроля, идентификации лекарственных препаратов, исследования фармакокинетики [3, 16, 19, 30].

Эффективность, выраженная числом теоретических тарелок, может быть определена непосредственно из электрофореграммы.

К снижению эффективности могут привести ряд факторов: увеличение зоны вводимой пробы (определяемая длительность ввода); образование температурного градиента (за счёт разницы температуры в центре капилляра и на внутренней стенке капилляра). Возникающий вследствие этого градиент вязкости приводит к тому, что вещество у стенки перемещается медленнее, чем в центре, что вызывает уширение полос и снижение эффективности; адсорбция на стенках капилляра, приводящая к искажению формы пиков (появление хвостов), и другие факторы. Все эти параметры управляются путём создания оптимальной схемы разделения.

Чувствительность метода. Основным способом детектирования в системах капиллярного электрофореза («Капель - 103 Р», «Капель - 104 Т», «Капель - 103 РТ», «Капель - 104 М», «Капель - 105», «Капель - 105 М») отечественного производителя - фирмы «Люмекс», является фотометрический [6].

Особенностью фотометрического детектирования разделённых аналитов в условиях кварцевого капилляра является малая толщина слоя (что обусловлено внутренним диаметром капилляра), а также - введением очень малых объёмов проб (~2-10 нл).

Чувствительность метода КЭФ с УФ-детектированием может быть существенно повышена за счёт концентрирования образца непосредственно в капилляре. Одним из наиболее общих подходов к увеличению концентрационной чувствительности в КЭФ является приём стекинга. Концентрирование образца происходит, когда ионы аналитов пересекают границу, которая отделяет зону низкой проводимости раствора и высокой - ведущего электролита. В случае если проба образца имеет значительно более низкую проводимость (за счёт разбавления водой или буфером), чем ведущий электролит, в зоне образца возникает относительно высокое электрическое поле. Аналиты внутри зоны образца движутся с более высокой скоростью, и, замедляясь на границе с зоной ведущего электролита, концентрируются. Стекинг образца применяется только к заряженным аналитам.

Чувствительность метода КЭФ с УФ-детектированием может быть также повышена за счет увеличения длины оптического пути при использовании капилляров с расширенным световым путем. Существует несколько способов: зону детектирования выполняют в форме пузырька, возрастание чувствительности в 3-5 раз; используют капилляры Z-формы, увеличение чувствительности в 20-40 раз.

Важной задачей любого сепарационного метода является селективность разделения компонентов пробы. Повышение селективности разделения в КЭФ может быть обеспечено за счёт изменения рН ведущего электролита, изменения напряжения, температурного режима в системе, введения в состав буферного раствора макроциклов, органических растворителей и др.

Применение метода капиллярного электрофореза при аналитических исследованиях.

Капиллярный электрофорез как новый и быстро развивающийся метод широко применяется в аналитической практике лекарственных средств, в том числе и в биологических средах с целью идентификации и количественного анализа [15, 17, 18, 31]. Используются преимущественно кварцевые капилляры и УФ-детекторы [9]. Однако находят применение в зарубежной практике и электрохимическое детектирование [23, 29], амперометрические детекторы типа «отражающая стенка» с электродами из углеродного волокна, меди [20, 22, 26], вольтамперометрические детекторы [12], а также масс-спектроскопия [25, 28], лазерная флюоресценция [27].

Капиллярный электрофорез применяется и при определении нелетучих примесей [1, 21, 28] в лекарственных веществах и составляет конкуренцию методу ВЭЖХ, отличаясь очень высокой эффективностью и сводя к минимуму размытие пиков. Как правило, метод используется для анализа водных растворов (буферные растворы), с добавлением ПАВ, либо не содержащих ПАВ [11]. В отдельных работах показаны возможности использования неводного капиллярного электрофореза [13].

Ряд сведений об использовании капиллярного электрофореза отмечен в отечественной литературе. Работы такого типа в существенной степени инициированы созданием отечественных систем капиллярного электрофореза «Капель».

Использование сепарационного метода анализа позволяет эффективно решать вопросы стандартизации лекарственных препаратов сложного состава. Была изучена возможность применения капиллярного электрофореза для качественного обнаружения и количественного определения бутоконазола нитрата в лекарственном препарате и биологических жидкостях. Проведена сравнительная оценка фармакокинетических параметров, противогрибковой активности и мукоадгезивных свойств бутоконазола нитрата. Методика использована для изучения накопления бутоконазола в сыворотке крови [7].

Проведено изучение возможности анализа доксициклина в моче капиллярным электрофорезом с использованием отечественного прибора «Нанофор-1». Методика характеризуется высокой воспроизводимостью и достаточной чувствительностью (граница обнаружения - 5 мкг/мл мочи) [9].

Фоминым А. Н. с соавторами показана возможность идентификации ряда азотсодержащих соединений основного характера в присутствии соэкстрактивных веществ мочи и крови методом капиллярного электрофореза «Капель-105» по электрофоретическим спектрам. Установлено, что на количественные характеристики исследуемых соединений не оказывают существенного влияния компоненты мочи и крови [2, 8].

Возрастание количества публикаций в отечественной литературе отражает актуальность и значимость метода КЭФ в аналитической практике.

Рецензенты:

  • Михалев А. И., д. фарм. н., профессор, зав. кафедрой биологической химии, ГБОУ ВПО ПГФА Минздравсоцразвития, г. Пермь.
  • Михайловский А. Г., д. фарм. н., доцент, зав. кафедрой неорганической химии, ГБОУ ВПО ПГФА Минздравсоцразвития, г. Пермь.