Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,791

MAGNETOELECTRIC EFFECT IN MAGNETOACOUSTIC RESONANCE AREA IN FERRITE-PIEZOELECTRIC STRUCTURE

Petrov R.V. 1 Petrov V.M. 2 Tatarenko A.S. 1 Bichurin M.I. 1 Pyatakov A.P. 3 Zvezdin A.K. 4
1 Novgorod State University, Veliky Novgorod
2 Novgorod State University, Veliky Novgorod
3 M.V.Lomonosov Moscow State University, Moscow
4 A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences
В статье приводится экспериментальное свидетельство наличия магнитоэлектрического (МЭ) взаимодействия в области магнитоакустического резонанса (МАР) в искусственной среде феррит-пьезоэлектрик. В материалах такого рода МЭ эффект проявляется как следствие взаимодействия магнитострикционных и пьезоэлектрических компонентов. Целью данной работы являлось экспериментальное исследование МЭ эффекта в области МАР феррита. МЭ элемент был изготовлен из двух монокристаллических материалов: пьезоэлектрика  лантангаллиевого силиката и феррита  иттрий-железистого граната. В работе приведены экспериментальные данные по изучению прямого МЭ эффекта для двухфазного образца ИЖГ-ЛГС в области МАР. Величина эффекта составила 14,1 В/(смЭ) на частоте около 2,8 МГц. Измерения проведены двумя методами, имеющими сопоставимые результаты. Полученные данные позволяют спрогнозировать возможность технической реализуемости приборов радио и СВЧ диапазона с использованием МЭ эффекта в области МАР с удовлетворительными параметрами.
The paper describes the experimental results of magnetoelectric (ME) effect in the area of magnetoacoustic resonance (MAR) in ferrite-piezoelectric bilayer. In the materials ME effect is appeared as a result of interaction of magnetostrictive and piezoelectric components. The aim of the work consisted in the experimental investigation of ME effect in the MAR area of ferrite. Bilayer ME element was made from piezoelectric lanthangallium silicate (LGS) and yttrium-iron garnet (YIG). The paper presents the experimental data of direct ME effect for the sample of YIG-LGS in the MAR area. The magnitude of ME effect amounted to 14.1 V/(cmOe) at frequency about 2.8 MHz. The measurements were carried out by two methods that had comparable results. The obtained data allow to state that the realization of radio and microwave devices using ME effect in the MAR area is possible.
magnetoelectric effect
magnetoacoustic resonance

Введение

На стыке хорошо известных и изученных явлений часто можно наблюдать совершенно новые проявления внутренних свойств веществ, дающих начало передовым исследованиям и служащих источником научного и технического прогресса. В статье приводится экспериментальное свидетельство наличия магнитоэлектрического (МЭ) взаимодействия в области магнитоакустического резонанса в искусственной среде феррит-пьезоэлектрик. В материалах такого рода МЭ эффект проявляется как следствие взаимодействия магнитострикционных и пьезоэлектрических компонентов. Упругое механическое взаимодействие между магнитострикционной и пьезоэлектрической фазами дает гигантский магнитоэлектрический отклик в магнитоэлектрических композиционных материалах [2,4,7,8,10]. Взаимодействие между магнитной (спиновой) и упругой подсистемами приводит к возникновению в магнетике связанных магнитоупругих колебаний, обладающих интересными физическими свойствами [3]. Магнитоакустический резонанс (MAP) проявляется в резком увеличении поглощения акустической волны по достижении резонансных условий со спиновой (при совпадении их частот и волновых векторов). Здесь, в отличие от большинства случаев релаксационных явлений в акустике, представляются возможности управления характеристиками (временем релаксации и т.д.) с помощью внешних магнитных полей [1]. Целью данной работы является экспериментальное исследование МЭ эффекта в области МАР феррита. Исследование этого явления позволит в дальнейшем создать ряд высокочастотных устройств, например, фильтр, вентиль, фазовращатель и пр., характеристиками которых можно управлять, меняя величину электрического поля.

Экспериментальный образец и измерительный стенд

МЭ элемент был изготовлен из двух монокристаллических материалов. Первый материал – пьезоэлектрический лантангаллиевый силикат La3Ga5SiO14 (лангасит — ЛГС) Y-среза с размерами 15х4х0,5 мм был предоставлен компанией ОАО «Фомос-Материалс», Россия (http://www.newpiezo.com). Второй материал – монокристаллический иттрий-железистый гранат (ИЖГ) представлял собой также пластину с размерами 13х4х1,35 мм, ориентированную в плоскости (110), и был предоставлен фирмой НИИ «Феррит-Домен», Россия (http://www.ferrite-domen.com). Оба образца были отполированы до зеркальной поверхности. На плоскости ЛГС были нанесены золотые электроды толщиной 0,5 мкм. МЭ элемент был изготовлен методом склеивания двух компонентов, пьезоэлектрика и феррита, с помощью поливинилбутираль-фенолформальдегидного клея. Толщина клеевого соединения составляла не более 12 мкм.

Расположение МЭ элемента в магнитных полях показано на рис. 1.

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 


Рисунок 1. Расположение МЭ элемента во внешних магнитных полях

 

МЭ элемент располагается в центре катушки Гельмгольца. Постоянное магнитное поле направлено вдоль плоскости магнитоэлектрического образца в первом случае и поперёк плоскости магнитоэлектрического образца во-втором. Переменное электромагнитное поле всегда было направлено вдоль плоскости магнитоэлектрического образца. В подобных условиях в феррите возбуждаются толщинно-сдвиговые волны. Резонансная характеристика S11 коэффициента отражения в отдельном образце ИЖГ до склеивания представлена на рис. 2а. В свою очередь эти волны возбуждают толщинно-сдвиговые волны в ЛГС - пьезоэлектрике Y-среза. Резонансная характеристика S11 коэффициента отражения в отдельном образце ЛГС представлена на рис. 2б. Экспериментальные резонансные частоты для обоих образцов совпадают с расчётными. Волны генерируют сигнал на плоскостных электродах пьезоэлектрика. Величина постоянного магнитного поля в случае продольного намагничивания 164 Э и в случае поперечного - 597 Э. Величина переменного магнитного поля 150 млЭ. Сигнал снимался с электродов, расположенных на плоскостях пьезоэлектрика.

 

а б

Рисунок 2. Резонансная характеристика S11 коэффициента отражения в отдельном образце: а - ИЖГ, б - ЛГС

 

Резонансная частота магнитоупругих колебаний в пластине ИЖГ после склеивания сдвигается вверх, что объясняется эффектом смещения линии ФМР под действием механического напряжения. После склеивания МЭ элемента обе резонансные характеристики совпадают по частоте.

Для измерений использовались два стенда. Для проведения панорамных измерений был использован стенд, изображённый на рис. 3а, включающий в себя МЭ образец, помещённый в катушку Гельмгольца, подключённую к измерителю комплексных коэффициентов передачи «Обзор-304», электромагнит, источник питания, гауссметр. Мощность сигнала на выходе измерителя была 10 млВт. На установке проводились измерения коэффициентов отражения S11, S22 и коэффициента прохождения S21 на частоте около 2,8 МГц.

 

       
   
 

 

 

 

 

 

 

 

 

 

 

 


а б

Рисунок 3. Измерительный стенд: а – для панорамных измерений, б – на базе осциллографа

 

Такой стенд позволяет увидеть изменение характеристик в реальном режиме времени. Резонансная характеристика S11 коэффициента отражения от входа в МЭ образце, обусловленная магнитной фазой, представлена на рис. 4а. Резонансная характеристика S22 коэффициента отражения от выхода в МЭ образце, обусловленная пьезоэлектрической фазой, представлена на рис. 4б. Для создания условий, возбуждающих магнитоупругие колебания в МЭ образце, использовали подмагничивающее поле. Результаты при поперечном и продольном подмагничивании существенно не отличались. Передаточная характеристика S21 показана на рис. 5а. Кривая 1 показывает коэф. прохождения без подмагничивающего поля, кривая 2 – с подмагничивающим полем. На частоте магнитоакустического резонанса в феррите, около 2,8 МГц, наблюдается увеличение амплитуды коэффициента прохождения примерно на 15дБ по сравнению с нерезонансным случаем. Такое поведение указывает на то, что основная часть энергии передаётся посредством энергии волн от входа устройства к его выходу. Так как в структурах возможно возбуждение лишь толщинно-сдвиговых волн, то это свидетельствует о наличии эффекта МАР в данном частотном диапазоне. Теоретические исследования МАР в связи с магнитоэлектрическими (МЭ) явлениями были проведены в работах [5,6,9], где рассмотрен магнитоэлектрический эффект в двухслойной магнитострикционно-пьезоэлектрической пленочной структуре на диэлектрической подложке в области магнитоакустического резонанса. Экспериментальные данные подтверждают теоретические расчёты.

а б

Рисунок 4. Характеристики коэффициента отражения в МЭ образце: а – S11, б – S22

 

а б

Рисунок 5. а – передаточная характеристика S21 МЭ образца, б – значение aME МЭ образца на частоте резонанса

 

Структурная схема второй установки представлена на рис. 3б. В неё входят МЭ образец, подключенный к осциллографу и помещённый в катушку Гельмгольца, подключённую к генератору сигналов, электромагнит, источник питания, гауссметр. На стенде проводились измерения прямого МЭ коэффициента.

Значения МЭ коэффициента aME на частоте магнитоакустического резонанса приведены на рис. 5б. На частоте около 2,8 МГц он составил около 14,1 В/(см×Э).

Сравнивая данные, приведённые на рис. 5а и рис. 5б, очевидно, что они полностью идентичны и два метода измерений полностью сопоставимы по результатам.

В результате проведённых исследований получены удовлетворительные результаты по величине МЭ эффекта. Это первые измерения МЭ эффекта, проведённые в радиочастотном диапазоне и имеющие столь значительную его величину. Теоретические предпосылки, приведённые в ранее опубликованных работах, полностью подтверждены. В дальнейшем будут опубликованы точные расчёты в сопоставлении с экспериментальными данными. Предполагается провести расчёты спектров магнитоакустических и упругих колебаний, оценить величины взаимодействия колебаний при разных условиях возбуждения.

Заключение

В работе приведены экспериментальные данные по изучению МЭ эффекта для двухфазного образца ИЖГ-ЛГС в области МАР. Величина эффекта составила 14,1 В/(см×Э) на частоте около 2,8 МГц. Измерения проведены двумя методами, имеющими сопоставимые результаты. Полученные данные позволяют спрогнозировать возможность технической реализуемости приборов радио и СВЧ диапазона с использованием МЭ эффекта в области МАР.

 

Работа выполнена в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы.

Рецензенты:

Захаров Анатолий Юльевич, д.ф.-м.н., профессор, заведующий секцией кафедры общей и экспериментальной физики ИЭИС НовГУ, г.Великий Новгород.

Селезнёв Борис Иванович, д.т.н., профессор, директор ИЭИС НовГУ, г.Великий Новгород.