Организация движения транспортных потоков, эксплуатационные характеристики как самой лесовозной дороги, так ее отдельных элементов, определяются прежде всего режимом движения лесовозных автопоездов. Основным показателем движения лесовозного автопоезда является тяговое усилие [3].
В рассматриваемом случае динамический фактор вычисляют по формуле:
, (1) 
где 
 – мощность двигателя в л.с., зависящая от частоты вращения коленчатого вала двигателя, n (об/мин);
 – КПД трансмиссии. 
В рассматриваемых условиях можно упростить метод решения уравнения (1) и расширить границы его применения. Это связано с тем, что закономерности изменения мощностных показателей двигателей определяются частотой вращения коленчатого вала для бензиновых двигателей. Для дизельных двигателей 100 % подача топлива отображает внешние скоростные характеристики двигателя, а для любой другой подачи топлива – частные характеристики [4]. На рисунке 1 представлены скоростные характеристики как карбюраторных, так и дизельных двигателей.
Введем координаты относительной мощности 
 и относительного числа оборотов 
 (
 – соответствует 
, 
 – соответствует 
) для объединения характеристики двигателей. 
 
 
Рис.1. Скоростные характеристики двигателей: n – частота, 
 – мощность 
На рисунке 2 представлены результаты стендовых испытаний карбюраторных различных двигателей.
 
Рис. 2. Относительные частичные скоростные характеристики карбюраторных двигателей
Эмпирические скоростные характеристики, показанные на рисунках 2 и 3, описаны различными зависимостями:
1. Графическими зависимостями, изображенными на рисунке 1.
2. Формулой С.Р. Лейдермана
, (2) 
в которой коэффициенты 
 соответственно равны для карбюраторных двигателей – 1; 1; 1, для дизелей – 1; 1,5; 0,5. 
3. Формулой Пуансе
. (3) 
Из данных формул следует, что для расчета мощности можно использовать следующую зависимость:
(4) 
 
Рис. 3. Относительные скоростные характеристики дизелей в зависимости от положения рейки топливного насоса по сравнению с номинальным: 1-1, 2-0.92, 3-0.86,
4-0.79,5-0.72,6-0.63,7-0.58
В формуле (4) путем статистической обработки относительных частичных характеристик находим коэффициенты 
, а постоянные a и b определяются путём испытания различных двигателей. 
Преобразуя формулу (3), уравнение для динамического фактора примет вид:
. (5) 
Согласно формуле (3) не удаётся получить критическое значение скорости, при которой двигатель переходит на пониженные передачи. При 
 динамический фактор достигает максимума. В процессе расчёта невозможно определять момент перехода на пониженную передачу. Критические скорости определены для максимальной подачи топлива при полной загрузке лесовозного автопоезда [1]. 
Второе решение дифференциального уравнения движения лесовозного автопоезда позволяет определить постоянство на всём интервале с помощью коэффициентов a и b в формуле (5). Коэффициенты a и b зависят от степени открытия дроссельной заслонки. Открытие дросселя заслонки непрерывно меняется на участках с изменяющимся продольным уклоном (вертикальные кривые) или участках плана при неизменном уклоне [1].
Поэтому относительные характеристики более эффективно представлять формулой:
 (6) 
где 
 – коэффициенты, индекс 
 соответствует степени открытия дроссельной заслонки. Они могут быть получены на основе обработки статистических данных (рисунки 4) при использовании таблицы 1 и 2. 
 
 
Рис.4. Экспериментальные значения и сглаживающие кривые коэффициентов 
 для карбюраторных (а) и дизельных (б) двигателей лесовозных автопоездов 
Таблица 1
Коэффициенты 
 для двигателей с карбюраторами 
| 
			 Коэффициенты  | 
			
			Степень открытия дроссельной заслонки, % | 
		||||||||
| 
			 100  | 
			
			 90  | 
			
			 80  | 
			
			 70  | 
			
			 60  | 
			
			 50  | 
			
			 40  | 
			
			 30  | 
			
			 20  | 
		|
| 
			 
			  | 
			
			 -1,32  | 
			
			 -1,32  | 
			
			 -1,32  | 
			
			 -1,32  | 
			
			 -1,32  | 
			
			 -1,3  | 
			
			 -1,27  | 
			
			 -1,25  | 
			
			 -1,22  | 
		
| 
			 
			  | 
			
			 1,62  | 
			
			 1,6  | 
			
			 1,57  | 
			
			 1,48  | 
			
			 1,38  | 
			
			 1,21  | 
			
			 1,0  | 
			
			 0,66  | 
			
			 0  | 
		
| 
			 
			  | 
			
			 0,7  | 
			
			 0,7  | 
			
			 0,7  | 
			
			 0,7  | 
			
			 0,7  | 
			
			 0,71  | 
			
			 0,73  | 
			
			 0,78  | 
			
			 0,82  | 
		
Таблица 2
Коэффициенты 
 для дизельных двигателей 
| 
			 Коэффициенты  | 
			
			 Относительное, по сравнению с номинальным, положение рейки топливного насоса, %  | 
		||||||
| 
			 100  | 
			
			 93  | 
			
			 86  | 
			
			 79  | 
			
			 72  | 
			
			 65  | 
			
			 58  | 
		|
| 
			 
			  | 
			
			 -1,61  | 
			
			 -1,4  | 
			
			 -1,15  | 
			
			 -0,96  | 
			
			 -0,86  | 
			
			 -0,77  | 
			
			 -0,7  | 
		
| 
			 
			  | 
			
			 2,25  | 
			
			 2,01  | 
			
			 1,8  | 
			
			 1,68  | 
			
			 1,59  | 
			
			 1,57  | 
			
			 1,56  | 
		
| 
			 
			  | 
			
			 0,35  | 
			
			 0,32  | 
			
			 0,2  | 
			
			 0,04  | 
			
			 -0,13  | 
			
			 -0,29  | 
			
			 -0,45  | 
		
Выразим число оборотов через скорость:
, (7) 
В результате получаем следующее уравнение для динамического фактора:
, (8) 
Решив полученное уравнение, определяем коэффициенты:
, 
, 
, 
, 
. 
Это соотношение позволяет определить критическую скорость в момент переключения с высшей передачи на низшую. Критическую скорость можно определить, если прировнять к нулю производную динамического фактора скорости, то получаем:
. (9) 
Моменту переключения с низшей передачи на высшую соответствует скорость 
, которая определяется максимальной частотой вращения коленчатого вала двигателя. 
На рисунке 5 согласно формуле (8) представлены динамические характеристики лесовозного автопоезда. Данный рисунок показывает, что скоростные качества на IV и V передачах значительно улучшаются.
 
Рис.5. Динамические характеристики автопоезда ЗИЛ-131БА + ГКБ-817 при степени открытия дросселя: 1-1, 2-0.8, 3-0.6, 4-0.4. Пунктир – двигатель 150 л.с., степень открытия дросселя – 1
Полученные таким образом частные динамические характеристики автопоездов, приемлемы для расчета установившихся фактических скоростей на отрезках автодороги с постоянными сопротивлениями.
Подставив 
 из формулы (8), получим: 
, (10) 
Частичные динамические характеристики, входящие в уравнение (10), необходимы при проектировании плана и продольного профиля лесовозной дороги при переменных дорожных сопротивлениях и при переменной степени открытия дросселя, при моделировании на ЭВМ движения автопоездов и т.д. [2, 5].
Повысить точности инженерных решений по проектированию лесовозных дорог можно не только с помощью расчета скорости, но и других показателей движения автопоездов. К таким значительным показателям относят затраты по топливу. Он в значительной степени определяет себестоимость перевозок лесоматериалов при выборе оптимального варианта трассы дороги.
Рецензенты:
Пухов Е. В., д.т.н., профессор, зав. каф. эксплуатации машинно-тракторного парка ФГБОУ ВПО «Воронежский ГАУ», г. Воронеж;
Астанин В.К., д.т.н., профессор, зав. каф. технического сервиса и технологии машиностроения ФГБОУ ВПО «Воронежский ГАУ», г. Воронеж.
Библиографическая ссылка
Сушков С.И., Бухтояров В.Н. МЕТОДИКА РЕШЕНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ ЛЕСОВОЗНЫХ АВТОПОЕЗДОВ ПРИ РАЗЛИЧНЫХ РЕЖИМАХ РАБОТЫ ДВИГАТЕЛЯ // Современные проблемы науки и образования. 2015. № 1-1. ;URL: https://science-education.ru/ru/article/view?id=18498 (дата обращения: 04.11.2025).



